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ABSTRACT: The  emergence  of  road  users’  global  positioning  system  (GPS)  trajectory  data  is  attracting  increasing
research interest in knowledge discovery to improve transport planning-related methods and tools. In fact, the widespread
use  of  GPS-enabled  smartphones  and  the  mobile  internet  has  increased  the  availability  and  size  of  such  data.  With  the
increase in GPS data coverage and availability, some research has expanded its use to estimate state-wide vehicle-miles
travelled,  to classify driving maneuvers for  road safety assessment,  or  to estimate environmental  performance indicators,
such as vehicular fuel consumption and pollution emissions. In computer science, research has used GPS data to infer road
network maps. Although the inferred maps provide a correct topology and connectivity, they lack the essential details to be
used  for  transport  modeling.  Therefore,  this  work  proposes  a  method  to  extract  network-wide  road  direction  and  turning
movement rules. In addition, building a road network model under the widely used macroscopic transport modeling software
serves as a proof of concept. A sensitivity analysis was carried out to determine the output quality and recommend future
improvements.  Road  segment  geometry  and  directionality  were  extracted  accurately  (case  study  accuracy  of  95%);
however,  turning  movement  rules  can  be  extracted  more  accurately  using  a  larger  GPS  vehicle  trajectory  sample  (case
study accuracy of 68%).

KEYWORDS: global  positioning  system  (GPS),  transport  model,  road  network,  intersection  control, map  inference,  road
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1    Introduction
Transport  network  modeling  requires  large  quantities  of  data,
depending  on  the  project  size  and  level  of  detail.  For  example,
building  a  microsimulation  network  model  for  a  neighborhood
requires  detailed  road  geometry,  road  type,  transport  demand
matrices,  intersection  control  type,  and  traffic  light  phasing.  The
model  results  also  require  validation,  which  is  usually  performed
by  comparing  the  model  output  to  traffic  counts  and  observed
travel  times  and  delays.  These  data  are  collected  by  different
means  and  for  different  sample  sizes  depending  mainly  on
modeling needs and available resources.

One  of  the  data  sources  that  is  usually  collected  and  used  for
transportation  studies  for  validation  and  calibration  is  global
positioning  system  (GPS)  data.  Recently,  data  from  floating
vehicles and probe vehicles were collected to estimate travel time,
queue  length,  and  traffic  volume,  as  described  by Zhao  et  al.
(2019) and Zito and Taylor  (1994).  This  technique estimates  trip
characteristics for a specific fleet or for predefined corridors, which
can introduce bias when the sample is limited spatially (only a few
corridors) or in terms of the fleet (only buses, taxis, or commercial
vehicles). Tantiyanugulchai and Bertini (2003) used GPS-equipped

transit  vehicles  to  determine  whether  transit  vehicle  speeds  and
travel  times  are  good  proxies  for  general  traffic  conditions  to  be
used  in  real-time  advanced  traffic  management  and  traveler
information  systems. El-Geneidy  and  Bertini  (2004) used  probe
transit  vehicle  GPS  data  to  determine  the  optimal  temporal
resolution  and  speed  for  reporting  traffic  conditions  obtained
from  loop  detector  data.  Although  these  methods  are  useful  for
answering specific  questions, Mennis  and Guo (2009) found that
an  increase  in  the  sample  size  and coverage  of  GPS data  enables
researchers  to  perform  data  mining  and  increase  geographic
knowledge discovery.

Recently, the widespread use of GPS-enabled smartphones and
the  mobile  internet  has  made  collecting  and  saving  GPS  data
simple  and  relatively  inexpensive.  As  these  data  become  more
widely available,  they are attracting much research interest  in the
transport  field.  High-sample  GPS  databases  are  being  built,  and
knowledge discovery research from GPS data has already started.
For  example, Fan  et  al.  (2019) examined  the  use  of  GPS  data  to
estimate vehicle miles traveled within the state of Maryland in the
USA. In another study, Phondeenana et al.  (2013) used vehicular
GPS data to classify driving maneuvers to improve road safety. In
the  environmental  field,  studies  have  proposed  methods  to
estimate  congestion,  vehicle  fuel  consumption,  and  pollution
emissions using GPS data (Gately et al., 2017; Kan et al., 2018; Lin
et al., 2019).
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In  parallel,  computer  science  and  geography  researchers  have
been  exploring  the  use  of  GPS  data  to  infer  road  network
geometry,  topology,  and  connectivity.  Some  studies  have
compared  different  algorithms  for  inferring  road  networks  from
GPS data.  These  algorithms can  be  divided  into  three  categories:
point  clustering,  intersection  linking,  and  incremental  track
insertion.  Through  a  clustering  approach,  few  studies  in  China
have developed techniques to automatically extract road networks
from GPS points or segments (Chen et al., 2021; Guo et al., 2022;
Zhang  et  al.,  2020).  The  main  idea  was  to  fit  the  road  centerline
according  to  the  vehicular  GPS  data  density  distribution.  Other
researchers  explored  intersection  linking  techniques  to  generate
road  segments  from  vehicle  trajectory  data  (Karagiorgou  and
Pfoser,  2012; Xie  et  al.,  2016; Zhang  et  al.,  2019).  This  approach
divides  the  network  inference  process  into  two  main  steps:
(1) detecting intersections using GPS data, for example, based on
turning  angles,  and  (2)  using  GPS  vehicle  trajectories  to  link  the
intersections  together  and form a  directed  road network.  Finally,
the  track  alignment  approach  has  been  studied  by  several
researchers (Leichter and Werner, 2019; Xie et al.,  2015; Ni et al.,
2018).  This  technique  incrementally  adds  global  positioning
system  (GPS)  tracks  to  an  initially  empty  map  and  can  also  be
seen as  an incremental  averaging of  the  GPS tracks.  Considering
the  three  methods,  it  is  not  possible  to  identify  a  single  method
that  is  preferred  with  respect  to  others;  however,  algorithms  that
produce maps with higher accuracy have lower coverage, and the
opposite  is  also  true.  It  can  also  be  said  that  the  most  popular
approaches  are  clustering  and  intersection  linking,  based  on  the
number of publications under each of these approaches.

These techniques can serve as the basis for future research that
aims  to  build  a  detailed  road  network  for  transport  modeling  or
autonomous driving. In fact, road network building is a very active
research area in autonomous driving. Providing detailed network
features  is  essential  for  autonomous  vehicle  operation  since  they
require precise knowledge of network topology and geometry. For
example, Bender  et  al.  (2014) aimed  to  develop  the  first  map
model usable by autonomous vehicles by representing road lanes
and intersections not only in terms of directional lines but also in

terms  of  drivable  surfaces  by  introducing  right  and  left  bounds.
The map model also needed to integrate driving rules.

Although  the  past  developed  work  is  useful  for  generating
simple road networks based on GPS data with a correct topology
and  connectivity,  there  is  a  need  to  develop  methodologies  that
help  extract  detailed  network  features  for  transport  network
modeling. For example, map inference methods lack the ability to
extract  detailed  information  on  network-wide  features  such  as
turning movement permissions at intersections or the number of
road  segments  in  lanes,  which  are  essential  input  data  for
transport  network  models.  The  development  of  macroscopic
network  models  is  labor- and  data-intensive.  Therefore,  the
development of automated methods can help significantly reduce
the resources required in transport modeling tasks.

The objective of this work is to develop a method for extracting
road network features from GPS vehicle trajectory data for use in
transport  network  modeling.  In  addition,  this  study  aims  to
provide a proof of concept by building a road network model with
the widely used macroscopic transport modeling software EMME.
More  precisely,  GPS  vehicle  trajectory  data  are  used  to  extract
network-wide road direction and turning movement information.
This  information is  essential  in  transport  modeling  and land use
studies when the study area is large, and network features cannot
be collected as efficiently using other methods.

2    Methods
Four  main  input  datasets  are  used:  (1)  GPS  vehicle  trajectory
points,  (2)  geographic  representation  of  the  road  network,
(3)  geographic  location of  all  intersections,  and (4)  Google  Maps
and  Street  View.  GPS  data  were  collected  during  the  spring  of
2014  in  Quebec  City,  Canada.  The  data  were  collected  over  21
days by 2,000 voluntary users through the Mon Trajet smartphone
app,  which  is  made  available  by  the  municipality.  Each  point  is
described  by  the  following  attributes:  map-matched X and Y
coordinates,  trip  ID,  speed,  and  timestamp  (Year-Month-Day-
Hour-Minute-Second). Fig.  1 is  a  map  of  the  raw  GPS  vehicle
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Fig. 1    Study area – GPS vehicle trajectory points.
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trajectory  points  (226,000  points)  inside  the  study  zone,  which
consists of 81 intersections.

A  shapefile  file  of  the  up-to-date  study  area  road  network  is
available  online  (Adresses  Québec,  2022).  The  locations  of  all
intersections  were  obtained  from  the  municipality  (Données
ouvertes,  2022).  Finally,  Google Maps and Street View were used
to  validate  the  results  by  serving  as  the  ground  truth  for  road
segment direction and intersection movement permissions.

This  study  was  completed  using  QGIS,  ArcGIS,  FME,  and
EMME.  QGIS  was  used  to  visualize  geographic  data,  perform
visual  validations,  and  create  maps.  The  travel  paths  were
constructed using the network analyst extension in ArcGIS. FME
was  used  to  manipulate  the  data  and  perform  geographic
operations.  Finally,  EMME is  the  macrosimulation software  used
to construct the road network model.

The  extraction  of  road  network  features  from  GPS  vehicle
trajectories can be divided into three main parts: (1) initialization,
(2)  link  direction  extraction,  and  (3)  turning  movement
permission extraction.

2.1    Initialization
The  first  part  of  the  process  is  the  initialization.  It  consists  of
creating  an  initial  base  network  using  EMME  software  and  a
simple  road  network  shapefile.  This  creates  a  digital  network
representation composed of links and nodes (Fig. 2). Each node is
uniquely  identified  and  located  exactly  at  the  intersections
depicted in the simple road network shapefile. On the other hand,

links are created assuming that all  roads are two-way streets,  and
each link is  represented using its  origin and destination nodes.  It
should also  be  noted that  the  initial  road network model  created
by  EMME  allows  all  movements  at  intersections  except  for
U-turns.

In  parallel,  the  GPS  points  are  filtered  to  remove  outliers,
defined as consecutive points separated by more than 30 m. This
threshold was  determined following the  visual  inspection of  GPS
vehicle  trajectory  points.  Outlier  removal  created  small  gaps
within the GPS trajectories, which were connected using a shortest
path  algorithm  and  a  simple  road  network  shapefile  using  the
network  analyst  extension in  ArcGIS.  This  process  produced full
trip  trajectories  that  were  geographically  snapped  to  the  simple
road network, which enabled the following geographic processing
steps.

2.2    Link direction extraction
The  road  network  model  created  during  the  initialization  step
assumed  2-way  links  for  all  road  segments.  However,  this  is  not
always  true  because  some  roads  are  only  one  way.  The  link
direction  extraction  process  aims  to  extract  the  directionality
information from the observed GPS data to remove modeled links
that do not exist.

Following  the  initialization  phase,  the  trip  trajectories  are
divided  into  straight  segments  for  which  the  segment  azimuth  is
calculated.  The  azimuth  corresponds  to  the  angle  between  the
segment  orientation  and  the  North  measured  clockwise.  After
examining  the  study  area,  a  direction  dictionary  was  created  to
associate  different  azimuth  ranges  to  cardinal  directions  (Fig.  3).
Each  segment  was  then  associated  with  a  cardinal  direction
depending on its azimuth. The same procedure was applied to the
initial EMME link table to determine the link directions. Once the
directions are determined for the GPS vehicle trajectory segments
and  EMME  links,  a  geographic  operation  is  carried  out  to
determine  the  nearest  link  for  each  GPS  vehicle  trajectory
segment.  The  segment  direction  was  used  as  a  criterion  to  select
only the nearest link in the same direction.

For each link, the number of observed GPS segments associated
with it was calculated and compared with the number of segments
associated  with  the  reverse  link  by  computing  their  ratio.  For
example, a ratio of 0.05 (or 5%) for a given link signifies that the
number of GPS segment observations for that link is equal to 5%
of  the  observed  number  of  segments  on  the  reverse  link.  This
indicates a high likelihood of that link (or direction of travel) not
existing since it  is  expected to have a similar count magnitude in
both directions for a given road.

 

Fig. 2    Initial road network model for EMME – links and nodes.
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To determine the optimal ratio indicating the presence/absence
of a link, a sensitivity analysis was carried out by testing different
ratio value limits between 1% and 10% and comparing the results
with  the  ground  truth  obtained  from  Google  Maps.  For  a  given
ratio  limit,  a  link  with  a  ratio  value  smaller  than  the  ratio  limit
value is considered to not exist, while a ratio value greater than or
equal  to  the  ratio  limit  value  is  considered  to  exist.  Once  the
prediction was made for each link, the accuracy was calculated as
the  number  of  correct  link  direction  predictions  divided  by  the
total number of links. The ratio limit value producing the highest
accuracy  was  selected  as  the  optimal  ratio  limit  value.  Once  the
optimal  value  was  determined,  the  absolute  number  of  observed
segments  for  each road was analyzed to determine the impact  of
sample  size  on  the  link  direction  prediction  accuracy.  A  second
sensitivity  analysis  was  performed  by  introducing  different
segment  count  cutoff  thresholds.  In  other  words,  the  prediction
accuracy  was  computed  on  a  subset  of  links  that  had  at  least  a

minimum  number  of  observed  segments  in  one  of  the  two  link
directions. The tested cutoff threshold values were 0 (or all links),
10,  20,  30,  40,  50,  100,  and 200.  At  each of  the cutoff  thresholds,
the link directions were predicted and compared with the ground
truth to calculate the prediction accuracy. A summary of the steps,
including initialization, is presented in Fig. 4.

2.3    Turning movement permission extraction
Having created a correct link and node representation of the road
network,  the  following  step  was  to  determine  the  permitted
turning  movements  at  intersections.  In  the  initial  road  network
model  created  using  EMME,  all  intersection  turning  movements
are allowed except for U-turns; however, the objective of this step
is  to  extract  and  allow  only  the  turning  movements  that  were
observed within the GPS trajectories. Fig. 5 presents a summary of
the  process  used  to  extract  turning  permissions  from  observed
GPS trajectories.
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Since  not  all  nodes  are  intersections,  the  intersection  locations
obtained  from the  Municipality  were  used  to  create  20-m radius
buffers, which were selected through inspection of the study area,
and  the  nodes  within  these  buffers  were  selected  as  intersection
nodes.  The  selected  nodes  were  then  used  to  create  new  3-m
radius  buffers.  These  intersection  node  buffers  were  used  to  clip
only  the  parts  of  the  GPS  trajectories  located  within  each  buffer.
Since  the  modeled  road  network  is  geographically  based  on  the
simple  road  network  and  the  GPS  trajectories  were  snapped  on
the same simple road network during the shortest path operation,
a  good  superposition  of  both  geographic  features  was  ensured.
The clipping operation removed GPS vehicle  trajectory segments
that  were  considered  to  not  be  intersection  movements.  The
remaining trajectory segments within the node buffers  were then
divided  into  two  segments,  inbound  (toward  the  node)  and
outbound  (outward  from  the  node).  The  next  step  was  to
determine  the  azimuth  for  the  inbound  and  outbound  segments
per  node  per  trajectory  segment.  The  azimuth  was  then  used  to
determine  the  direction  of  every  segment  using  the
correspondence  between  the  azimuth  angle  and  the  direction
established  in  the  previous  step  (Fig.  3).  The  next  geographic
operation  was  to  find  the  nearest  link  to  each  inbound  and
outbound  segment  while  ensuring  a  matching  direction  between
them.  At  this  point,  each  trajectory  with  an  inbound  and
outbound  segment  within  a  node  buffer  is  associated  with  two
links  (inbound and outbound)  and can  be  expressed  in  terms  of
the  intersection  node,  origin  node  (from  the  inbound  link)  and
destination  node  (from  the  outbound  link).  A  compilation  of  all
observed movements  at  the different  nodes provides  the number
of  times  that  each  movement  has  been  made.  A  turning
movement was predicted to be permitted if there was at least one
observation from the GPS trajectories for that specific movement.

To  determine  the  intersection  movement  prediction  accuracy,
the extracted turning movements for a subset of nine intersections
(90  turning  movements)  were  compared  to  the  ground  truth
obtained from Google Maps and Street View. A sensitivity analysis
was  performed  to  assess  the  effect  of  sample  size  on  prediction

accuracy  by  evaluating  the  prediction  results  for  turning
movements  for  which  at  least  one  or  two  observations  were
extracted.

3    Results

3.1    Link direction extraction accuracy
The highest link direction extraction accuracy was 95%, which was
obtained using a ratio limit of 5%. In other words, a link that has a
GPS  segment  accounting  for  less  than  5%  of  that  of  the  reverse
link  can  be  considered  to  not  exist  with  95%  accuracy.  The
sensitivity  analysis  results  for  the  different  ratio  limit  values  are
presented in Fig. 6.

Following the selection of the optimal ratio limit value (5%), an
attribute  was  added  to  the  initial  modeled  road  network  to
indicate  whether  the  directional  road  segment,  represented  by  a
link, existed. The resulting link representation of the road network
is presented in Fig. 7. Links presented in blue were determined to
be  nonexistent  since  they  do  not  have  enough  GPS  segment
observations compared to the reverse link (ratio < 5%). A special
case is also presented in caption A of Fig. 7, where the initial road
network model was created as four parallel links (compared to two
links in regular situations). This is explained by the way the simple
road network used as an input, represented that road. Since it has
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a large median, it was represented as two lines in the simple road
network  and  therefore  understood  as  two  different  roads  by
EMME.  However,  the  developed  method  was  able  to  determine
which link corresponds to an existing road segment and filter the
nonexistent links.

Considering sample size in the prediction accuracy assessment
was found to have an impact. The introduction of a threshold on
the  segment  count  ensured  that  only  roads  with  a  minimum
number  of  GPS  segments  were  considered. Fig.  8 shows  that
increasing  the  minimum threshold  is  correlated  with  an  increase
in the link direction prediction accuracy.

For example, using a minimum threshold of 200 segments for a
given  road  segment  results  in  a  prediction  accuracy  of  98.7%,  as
opposed  to  not  having  a  minimum  threshold,  which  results  in
95%  accuracy.  However,  for  this  study  area  and  GPS  dataset,
setting the highest  threshold implies  that  predictions can only  be
made for 304 links instead of all 674 links, as shown in Table 1.

3.2    Turning movement extraction accuracy
After comparing the extracted turning movements (n = 90) to the
ground  truth  obtained  from  Google  Maps  and  Street  View,
an  accuracy  of  68%  was  found.  Moreover,  97%  of  the  incorrect
predictions correspond to turning movements  that  are  permitted
within the ground truth dataset but for which no observation was
extracted  from  the  GPS  dataset.  Furthermore,  the  prediction
accuracy was 98% when only turning movements with at least one
observation were examined. However, this restriction reduced the
number of turning movements for which a turning movement is
predicted  by  37  and  reduced  the  probability  of  detecting
prohibited  turning  movements.  Finally,  the  prediction  accuracy
for  turning  movements  with  at  least  2  observed  movements  was
100%, but prediction could only be performed for 51% of the total
number of turning movements. Fig. 9 presents an example of the
result for one intersection that was extracted with 100% accuracy.
Permitted  turning  movements  are  presented  in  red,  while
prohibited  movements  are  presented  in  green.  It  should  also  be
noted  that  no  U-turns  were  extracted  from  the  GPS  data;
therefore, it was not possible to determine the turning permissions
for  that  turn  type.  from  the  GPS  data  sample;  therefore,  it  was
not  possible  to  determine  the  turning  permissions  for  that  turn
type.

4    Conclusions
In this work, we develop a method that can extract link directions
and  turning  movement  rules  from  GPS  vehicle  trajectory  data
with  high  accuracy.  Considering  a  link  corresponding  to  a
directional  road  segment  with  an  observed  GPS  segment  count
less  than 5% of  that  of  the reverse link is  a  good indicator of  the
absence  of  that  road  segment.  This  resulted  in  a  minimal
prediction  accuracy  of  95%.  The  performance  of  a  sensitivity
analysis  on  the  sample  size  (GPS  segment  count  per  road
segment) proved that an increase in sample size will only improve
prediction results  (up to  99%).  This  level  of  accuracy is  adequate
for  macroscopic  models  that  require  this  type  of  information for
large  regions.  The  contribution  of  this  method  is  the  automatic
extraction  of  directional  road  segments  for  very  large  regions,
assuming good coverage of GPS data observations.

At  intersections,  turning  movement  permission  prediction
achieved  a  lower  accuracy  (68%)  than  link  direction  extraction.
This  is  due  to  the  lower  number  of  observations  for  each
intersection turning movement.  In fact,  turning movements  with
at  least  one  observation  were  predicted  with  98%  accuracy.
However, 37% of the permitted turning movements did not have
any  observations  extracted  from  the  GPS  data.  Therefore,  an
increase  in  sample  size  will  allow  better  coverage  of  intersection
turning movements.

Using  this  GPS  dataset,  it  was  not  possible  to  extract  network
features  (link  directions  and  turning  movements)  for  different
times of the day simply due to the sample size. A larger dataset will
allow  for  better  knowledge  discovery  by  providing  greater
temporal coverage of the different times of day. This is important
for  road  networks  with  varying  numbers  of  lanes  available  for
traffic  at  different  times  of  the  day.  For  example,  some  road
networks have restricted lanes for transit use during peak periods
or  for  parking  during  off-peak  periods.  Similarly,  some
intersections have varying turning movement permissions by time
of day for traffic optimization and safety purposes.

Overall,  the  developed  method  demonstrates  the  feasibility  of
automatic  road  network  feature  extraction  for  modeling  and
macrosimulation purposes. This work presents the required input
data  and  the  proposed  methodology  to  achieve  this  objective.  A
proof of concept was also made by building a road network model
using  the  EMME  software  for  the  study  area  in  Quebec  City,
Canada,  using GPS vehicle  trajectory data  collected by motorists.
Data  tables  in  the  EMME  format  were  created,  indicating  which

 

Table 1    Impact of the cutoff threshold on the number of links.

Threshold 0 10 20 30 40 50 100 200

Number of links 674 608 564 528 514 498 398 304
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Fig. 8    Prediction accuracy vs. cutoff threshold.

 

Fig. 9    Extracted  intersection  movement  permissions  (permitted  turning
movements in red and prohibited movements in green).

Extracting networkwide road segment location, direction, and turning movement rules from global positioning system ... 263

https://doi.org/10.26599/JICV.2023.9210046
 



links and turns had to be removed from the base network to better
represent real road network features within the study zone.

In  summary,  large  datasets  of  GPS  points/trajectories  can  be
used  to  extract  road  network  features  to  construct  road  network
models.  The extraction accuracy was found to depend mainly on
the sample size. Therefore, the main limitation of this work is the
sample size of the GPS vehicle trajectory data. The increased use of
GPS-enabled  devices  and  the  increased  availability  of  larger  GPS
datasets  will  only  increase  the  prediction  accuracy  by  providing
greater  spatial  and  temporal  coverage.  Spatial  and  temporal
coverages  dictate  the  area  for  which  network  features  can  be
extracted  and  the  possibility  of  extracting  features  for  different
periods of the day. It should be noted that for this case study, the
GPS  vehicle  trajectory  data  and  the  Google  validation  data  were
not collected during the same period, which should be considered
if the study area is undergoing changes in topology or major road
redevelopment.  For  the  current  study,  it  was  assumed  that  no
significant  changes  in  road  topology  occurred  between  the  time
that  the  GPS  trajectories  were  recorded  and  the  time  that  the
validation data were observed.

In  addition  to  the  use  of  larger  datasets,  future  works  include
the  use  of  machine  learning  techniques,  such  as  classification
learners,  to  determine  intersection  movement  permissions.
Additionally,  future  research  can  explore  the  possibility  of
extracting  more  network  features  required  for  macroscopic
modeling from GPS data, such as the number of lanes, road types,
and link performance relationships. Autonomous driving can also
benefit  from  the  extracted  network  features  by  adding  them  to
maps used in autonomous vehicles.

Replication and data sharing
xxxx
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